
Hospital Readmissions Reduction Program:
An Economic and Operational Analysis

Dennis J. Zhang, Itai Gurvich, Jan A. Van Mieghem, Eric Park
Kellogg School of Management, Northwestern University, Evanston, IL 60208,

Robert S. Young, Mark V. Williams
Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, 

May 31, 2014

The Hospital Readmissions Reduction Program (HRRP), a part of the US Patient Protection and Afford-

able Care Act, requires the Centers for Medicare and Medicaid Services to penalize hospitals with excess

readmissions. We take an economic and operational (patient flow) perspective to analyze the effectiveness of

this policy in encouraging hospitals to reduce readmissions. We introduce a single-hospital model to capture

the dependence of a hospital’s readmission-reduction decision on various hospital characteristics. We derive

comparative statics that predict how changes in hospital characteristics impact the hospital’s readmission-

reduction decision. We then proceed to develop a game-theoretic model that captures the competition

between hospitals introduced by the HRRP policy’s benchmarking mechanism. We provide bounds that

apply to any equilibrium of the game and show that the comparative statics derived from the single-hospital

model remain valid after the introduction of competition. Importantly, the comparison of the single-hospitals

and multi-hospital models shows that, while the competition among hospitals often encourages more hospi-

tals to reduce readmissions, it can only increase the number of “worst offenders,” which are hospitals that

prefer paying penalties over reducing readmissions in any equilibrium. We calibrate our model with a dataset

of hospitals in California which allows us to quantify the results and insights derived from the model. Last,

we validate our model with recent hospitals’ performance data collected since the policy was implemented.
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1. Introduction

According to the Medicare Payment Advisory commission (MedPAC) (MedPAC 2007), nearly a

fifth of Medicare beneficiaries that are discharged from a hospital are readmitted within 30 days.

Re-hospitalization of a patient shortly after the initial discharge is often viewed as a sign of poor

quality of care (Ashton et al. 1997 and Gwadry-Sridhar et al. 2004). Past research has shown

that hospital readmissions are often costly (Jencks et al. 2009 and MedPAC 2007) and avoidable

through simple process changes (Hansen et al. 2013). The Centers for Medicare and Medicaid
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Figure 1: Timeline of the Hospital Readmissions Reduction Program

Services (CMS) estimated that a 20% reduction in hospital readmission rates could save 5 billion

dollars by the end of fiscal year 2013 (Mor et al. 2010).

In response to the increasing costs associated with readmissions, the Hospital Readmissions

Reduction Program (HRRP) was implemented by CMS on October 1, 2012. The program penalizes

medicare payments to hospitals with high 30-day readmission rates for acute myocardial infarction

(AMI), heart failure (HF), and pneumonia (PN). Two additional diseases will be added to the

policy starting 2015. Using historical data, the CMS determines, for each hospital in the Inpatient

Prospective Payment System (IPPS), whether its readmission rates are higher than they should be

given the hospital’s case mix. The CMS model determines the targets by benchmarking hospitals

against peers with similar case mix.

Figure 1 gives a detailed view of the policy’s timeline. For fiscal year 2013, CMS uses bench-

marking data from July 2008 to July 2011 and, under current legislation, hospitals with higher-

than-expected readmission rates have their total Medicare reimbursement for fiscal year 2013 cut

by up to 1%. This maximum penalty cap is expected to increase to 2% in 2014 and to 3% in 2015.

Two common criticisms of the HRRP policy are: (i) hospitals are not the appropriate entities

to be held accountable for readmissions, since some causes of readmissions are outside the control

of hospitals. Only a small fraction of readmissions is claimed to be preventable by measures that

hospitals directly control (van Walraven et al. 2011); and (ii) the readmission rate of a hospital

is not a good proxy for its quality of care. There is empirical evidence that people who have

severe illness or come from a disadvantaged socioeconomic status are at particularly high risk for

readmission (Joynt et al. 2011).

Supporters of the HRRP policy point to the large number of patients whose discharge is fraught

with poor communication, ineffective medication management, and inadequate hand-offs to the



Zhang et al.: Hospital Readmissions Reduction Program: An Economic and Operational Analysis
00(0), pp. 000–000, c© 0000 INFORMS 3

primary care physicians or nursing homes. A report by the Medicare Payment Advisory Commis-

sion supports the HRRP policy in estimating a small but significant decrease in national rates of

readmission for all causes from 15.6% in 2009 to 15.3% after the introduction of the HRRP (Health-

Care.gov 2011).

This paper does not argue with the appropriateness of readmission as a quality-of-care metric.

We also do not consider mechanism design questions. Rather, we take HRRP as a given gov-

ernment program and analyze its effectiveness in reducing readmissions. We take an economic

and operational perspective to ask a simple question: assuming that hospitals are self-interested

operating-margin maximizers and are strategically forward-looking, does the HRRP policy pro-

vide economic incentives for a hospital to reduce its readmissions? What are the characteristics

of hospitals that prefer paying penalties over reducing readmissions? And how does the HRRP

benchmarking (and the competition it induces) affect who these hospitals are?

Readmission-reduction decisions present hospitals with trade-offs between several cost and rev-

enue drivers: (i) The reduction of the penalty due to readmission improvements: 2,217 hospitals

nationwide incurred more than $300 million HRRP penalties in the fiscal year 2013 (Fontanarosa

and McNutt (2013)). Many hospitals incurred hundreds of thousands of dollars in penalties, while

the “worst-offenders” incurred millions of dollars in penalties. These amounts could be tripled

by 2015, when the maximum penalty cap is expected to increase to 3%. (ii) Contribution loss

due to readmission reductions: taking a pure revenue perspective readmissions generate revenues.

Specifically, if a non-negligible portion of the hospital’s patients are covered under a pay-per-case

insurance scheme, readmissions may account for a significant proportion of the hospital’s contribu-

tion margin. (iii) Process-improvement cost: Reducing readmissions may involve costly long-term

process changes.

CMS determines the expected readmission rate for each hospital using discharge-level data for

IPPS hospitals from the previous three years. A logistic Hierarchical Generalized Linear Model

(HGLM) is used to determine the national average performance conditioning on the case mix of

the particular hospital – we refer to this conditional average as the CMS expected readmission

rate for that hospital. If the hospital’s predicted readmission rate, based on the hospital’s actual

performance, for the next year is greater than its CMS expected readmission rate, the hospital

incurs a penalty up to the maximum penalty cap – currently 1%. For fiscal year 2014, the CMS

expected readmission rate for each hospital is based on data from July 1st, 2009 to June 30th,

2012. This penalty mechanism inevitably introduces game theoretical elements into each hospital’s

decision making since one hospital’s future penalty is determined not only by its own actions, but

also by the performance of all other (similar) hospitals.
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We use analytic modeling to study the impact of the HRRP policy on a hospital’s long-term

readmission reduction efforts. We develop a theoretical model which captures the patient flow

from readmissions, the essential financial driving forces in each hospital’s decision, and the game-

theoretical nature of the policy design. Our stylized operational and financial model of the individ-

ual hospital (see Section 2) captures the three financial considerations mentioned above: the savings

in penalty, the loss in contribution, and the cost of reducing readmissions. We allow for a flexible

specification of the cost of reducing readmissions and capture the possible reduced contribution of

readmitted patients vs. first-time patients.

One may take initially the view that hospitals are “naive” and do not take into account how the

CMS-targets move with decisions made by other hospitals. Our single-hospital model then allows

to capture characteristics of hospitals that are incentivized to reduce their readmission rates in

response to the policy.

If hospitals do, however, take into account the decisions of their peers, one would want to make

sure that the insights obtained from the single-hospital model persist when hospitals indeed consider

this strategic interaction. We then proceed to introduce a static game where hospitals determine

their readmission reduction efforts while taking other hospitals’ actions into consideration. We

show that existence and uniqueness of pure strategy equilibrium is not guaranteed but we are able

to identify global bounds that apply to all equilibria of the game and provide meaningful insights

into its outcomes. Specifically, we derive a lower bound on the number of hospitals that are not

incentivized by HRRP–this, in particular, provides a bound on the policy’s effectiveness. We further

use the bound to show that, unexpectedly, competition through benchmarking can only increase

the number of hospitals that prefer incurring penalties over reducing readmissions.

In Section 5 we apply our model to hospitals in California. We calibrate our model using the

data, and report findings drawn from the dataset focusing on those insights pertaining to non-

incentivized hospitals. We find that under various parameter choices (regardless of whether hos-

pitals are short-sighted or forward looking) the percentage of hospitals that pay penalties but do

not reduce readmissions in any equilibrium is non-negligible for all monitored diseases. Namely,

there is a set of hospitals that are not incentivized by HRRP to improve their readmissions. Several

other observations related to non-incentivized hospitals arise from our simulation study:

1. The effectiveness of the HRRP policy depends on various characteristics of a hospital: A

hospital in an urban area, with greater competition and higher probability of patients being read-

mitted to a different hospital, has a greater financial incentive to reduce its readmission. Second,

the current HRRP policy is not effective in inducing hospitals with poor performance since, for

these hospitals, the cost of reducing readmissions is greater than the savings in penalties. Third,

hospitals with low percentage of medicare revenue are less likely to reduce their readmissions.
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Patients served by these hospitals are in relative disadvantage under the current structure of the

policy. Forth, the higher the contribution margin of a hospital, the smaller the likelihood of the

hospital to reduce its readmissions under the HRRP policy. This suggests that a better regulated

payment system may be helpful in incentivizing hospitals to reduce readmissions.

2. The cost of process changes to reduce readmission plays an important role in the hospitals’

responses to the HRRP policy. Consequently, research projects promoting simple (i.e, not costly)

readmission reduction programs, such as BOOST (Hansen et al. 2013), can enhance the effectiveness

of the HRRP.

3. The Medicare Payment Advisory Commission emphasizes the importance of the competition

introduced by the HRRP benchmarking procedure (Glass et al. (2012)). It is therefore important to

understand the hospitals’ decisions when they consider the strategic interactions among them. We

find that, while the competition induced by HRRP may indeed incentivize more hospitals to reduce

readmissions relative to the individual hospital (no benchmarking) model, it can only increase the

number of hospitals that prefer paying penalties to reducing readmissions.

The policy is still relatively new, and it is premature to draw definite conclusions about its

long-run effectiveness. Nevertheless, in Section 5, we validate our model predictions about those

non-incentivized hospitals by comparing the simulation results to the actual changes in hospitals

readmission ratios between 2013 and 2015. This initial empirical evidence supports the predictive

power of our model. Specifically: the hospitals that our model identifies as those that prefer pay-

ing penalties over reducing readmissions coincide with the actual hospitals that did not reduce

readmissions and continue incurring penalties.

We conclude this introduction with a brief literature review. Much of the academic work in

the medical literature focuses on understanding the causes of readmissions and proposing effec-

tive quality improvement programs to help hospitals reduce readmissions (Dharmarajan et al.

2013, Krumholz et al. 1997 and Stewart et al. 1999). Using 2003-2004 Medicare data, Jencks et. al.

(Jencks et al. 2009) report the most frequent diagnoses for 30-day readmissions for 10 common con-

ditions. Using national Medicare data from 2006 to 2008, Karen et al. (Joynt et al. 2011) examine

30-day readmissions for AMI, HF, and PN, and show that medicare patients from a poorer socioeco-

nomic background have particularly high risk of being readmitted. The literature also demonstrates

that simple quality-improvement programs – such as coaching the caregivers of chronically ill or

older patients (Coleman et al. 2006), properly planning the discharge process (Naylor et al. 1999,

Hansen et al. 2013), and conducting a nurse-directed multidisciplinary intervention (Rich et al.

1995) – can effectively reduce readmissions.

Since the introduction of the US Patient Protection and Affordable Care Act (ACA), in partic-

ular the HRRP policy, the medical literature studied the structure of this policy and its medical
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effectiveness. Vaduganathan et al. 2013 question the validity of considering 30-day readmissions as

a measure of one hospital’s readmission conditions in the policy. Srivastava and Keren 2013 point

out that the current policy does not cover pediatric hospitals and suggest the readmission quality

measure for hospitalized children should focus on different conditions; Vashi et al. 2013 suggest

that approximately 18% of hospitals discharges were followed by at least 1 hospital-based acute

care encounter within 30 days, which suggests that 30-day readmissions do not necessarily reflect

the quality of care in the hospital.

Here we take the HRRP as given and ask whether the HRRP policy financially incentivize hos-

pitals to reduce their readmissions? Our research is, in turn, also related to the stream of literature

in health economics, which studies moral hazard in hospitals’ and physicians’ behavior (Chiappori

et al. 1998, Propper and Van Reenen 2010) and analyzes the effect of policy interventions (Cutler

and Gruber 1996, Card et al. 2008).

2. Model

In this section, we introduce a stylized hospital-level patient flow model and link it to the contri-

bution margin of a hospital, which sets the foundation for analyzing individual hospital’s behavior

in Section 3 and hospitals’ joint equilibrium in Section 4.

2.1. Hospital Flow Model

Each hospital faces an exogenous arrival of patients for each disease i and each insurance type j,

with a rate λeij. The HRRP distinguishes between Medicare patients, and patients with private

insurance, Medicaid, military insurance and other insurance types. 1

For every disease type i and insurance type j, the readmission rate is denoted as rij. A patient

requiring readmission could either return to the hospital from which he/she was originally dis-

charged, or visit a different hospital. We refer to the probability that a patient is readmitted to

a different hospital as the hospital-level readmission divergence probability and denote it by dh.

Patients that were classified as belonging to group ij upon first visit may, upon readmission belong

to a different disease group i′. The HRRP policy counts these towards the readmission in group

ij. We call the probability that a patient is readmitted to a different disease group as disease-level

readmission divergence probability, denoted by dd. A flow diagram for patients with disease i and

payment j in a hospital is shown in Figure 2, where λ
dh
ij is the rate of the readmitted patients

coming from other hospitals, and λ
dd
ij is the rate of the patients readmitted form diseases other

than i. Finally, λij is the total throughput of patients in group ij.

1 While some research claims that demand is not truly exogenous as patients can be induced to visit the hospi-
tals (Acton 1975), recent econometric studies have shown that hospitals can hardly increase or decrease the incoming
rate of patients (Dranove and Wehner 1994).
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Figure 2: Operational flow of readmissions in a hospital

Each hospital receives a payment pij for treating a patient of type ij. Readmitted patients may

be less profitable (Zook et al. 1980). We refer to the percentage that the contribution decreases

per readmission as the readmission loss factor and we denote it by l. Thus, the contribution for

the kth readmission is lkpij.

Letting λaij = λeij +λ
dh
ij +λ

dd
ij the total incoming rate for patient group ij, direct calculation yields

that the combined arrival rate (exogenous patients plus readmitted patients) for disease ij satisfies:

λij = λaij + rij(1− dh)(1− dd)λij

so that

λij =
λaij

1− rij(1− dd)(1− dh)
(1)

where λaij is the total throughput of the hospital. Adding the subscript h to denote a specific

hospital, hospital h’s revenue is:

ΠR
ijh(0) = λaijhpijh

ΠR
ijh(rijh) = ΠR

ijh(0)
1

1− (1− l)(1− dh)(1− dd)rijh
ΠR
h (rh) =

∑
ij

ΠR
ijh(rijh).

(2)

where, note, Πijh(0) is the revenue from patients in group ij for hospital h if rijh = 0. We define

contribution margin, ΠC
j , as the difference between the hospitals revenue and all the hospitalization

variable labor and supply cost. We assume that the contribution margin is the same for one disease

across all hospitals and is a fraction of Cm (for Cm ≤ 1) of the total revenue, i.e,

ΠC
h (rh) =CmΠR

h (rh), (3)
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where the argument rh captures the dependence of this contribution margin on the hospital’s

readmission rates.

2.2. Penalty Structure

In October 2012, CMS started penalizing Medicare payments to hospitals based on their excess

readmission ratio for monitored diseases. The excess readmission of a hospital for each monitored

disease is measured as a ratio of its risk-adjusted predicted readmission rate (rijh for patient with

condition i and hospital h) and its risk-adjusted expected readmission rate (reijh for patient with

condition i and hospital h). Here, “risk-adjusted” means that the estimated readmission rate for a

given hospital is adjusted to the case mix of that hospital. Therefore, hospitals with more severe

patients in their case mix, have higher risk-adjusted expected and predicted readmission rates. The

risk adjustment prevents the discrimination of hospitals with more difficult patients.

CMS computes the expected and predicted readmission rates for every hospital by applying

the HGLM model to discharge-level data. The detailed model is described in Appendix A. For

each hospital h, the risk-adjusted predicted readmission rate, rijh, predicts the readmission rate of

disease ij in hospital h (for j =Med, i.e, Medicare patients) in the following year conditional on

its case mix remaining unchanged. Roughly speaking, the risk-adjusted expected readmission rate,

reijh, is the readmission rate of the average hospital with the same case mix as hospital h. We will

refer to these numbers as the CMS-predicted and CMS-expected readmission rates.

If the excess readmission ratio, rijh/r
e
ijh, for hospital h is greater than 1, CMS will impose a

penalty equal to the sum of base operating diagnosis-related group (DRG) payments from Medicare

patients with disease i multiplied by rih
re
ih
− 1. However, the sum of all penalties is capped by a Pcap

fraction of the total hospital’s medicare revenue for the monitored diseases. Formally, the total

penalty for hospital h and all monitored diseases is given by:

Ph(rh, r
e
h) = min

{ ∑
i,j=Med

max

(
rijh
reijh
− 1,0

)
ΠR
ijh, Pcap

∑
i,j=Med

ΠR
ijh

}
(4)

3. Single-Hospital Model

To gain some structural insights, let us first focus on the case where there is a single group of patients

(a single disease and a single insurance plan) so that we can drop the subscripts ij. Without loss of

generality and to simplify the algebra, assume that the readmission divergence probability dh = 0

and dd = 0, and that the readmission loss factor is l = 0. The revenue, the contribution margin,

and the penalty for hospital h with actual readmission rate r and risk-adjusted CMS-expected

readmission ratio r
re

are then rewritten as:

ΠR
h (r) = ΠR

h (0)
1

1− r
= λahph

1

1− r
,
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ΠP
h (r) =CmΠR

h (r),

Ph(r, re) = φmedh ΠR
h (r)min

(
max

( r
re
− 1,0

)
, Pcap

)
.

where φmedh is the percentage of the hospital h revenue that comes from Medicare patients.

We assume that hospitals are operating-margin maximizers. While nonprofit hospitals should

not incentivize their management group to maximize any form of profit, past studies have shown

that these hospitals behave as profit maximizers in a competitive market (Deneffe and Masson

2002). Also, we consider the operating margin as the contribution margin minus the penalty and

the readmission reduction cost.

Reducing readmission may involve process changes (Naylor et al. 1999) or increases in staffing

(Stewart et al. 1999). These are long-term commitments. Consequently, we assume that if a hospital

reduces its readmission from r0 to r, then an annual readmission-management cost C(r0, r) is added

to the hospitals cost in each subsequent year. The function C(·, ·) is assumed to be continuous and

bounded with a second derivative that satisfies
∣∣∣ ∂2

∂x∂x
C(y,x)

∣∣∣ ≤ η 1
(1−x)3 for some constant η and

∀x, r ∈ (0,1). This technical assumption is satisfied, in particular, by functions of the form

C(y,x) =Cv
h(y−x)α + g(y),

for any function g and any α≥ 0.

When a hospital with current readmission rate rh0 and CMS-expected readmission rate reh decides

to reduce readmissions to rh, its operating margins for the subsequent year is given by:

R(rh0, rh, r
e
h) = ΠP

h (rh)−Ph(rh, r
e
h)−C(rh0, rh)

=CmΠR
h (0)

1

1− rh

(
1−φmedh

1

Cm
min

(
max

( r
re
− 1,0

)
, Pcap

))
−C(rh0, rh).

(5)

The hospital then chooses a maximizer

r∗h(rh0, r
e
h)∈ arg max

x≤rh0
R(rh0, x, r

e
h) (6)

An implicit assumption here is that hospitals do not deliberately increase readmission rates. One

could argue that this is reasonable for ethical reasons but it is also consistent with the spirit of our

analysis that focuses on best case outcomes of the policy and tries to identify hospitals that “fall

outside” of the policies effectiveness boundaries.

Our first result is that a hospital will have financial incentive to reduce its readmissions only

when its readmission rate is contained in a certain interval, the width of which depends on the

hospital’s cost structure and other hospital parameters. This dependence provides some useful

insights.
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Figure 3: (LHS) No readmission reduction cost C(r0, r)≡ 0 (RHS) Linear cost C(r0, r) =Cv× (r−
r0) (For re = 20% and Pcap = 3%)

Proposition 1. The optimal decision for hospital h with original readmission rate rh0 is either

to remain at its current readmission rate or to set the readmission rate at the expected readmission

rate reh:

r∗h(rh0, r
e
h) =

{
reh if rh0 ∈ [reh, f(rh0, r

e
h)],

rh0 otherwise.
(7)

where f(rh0, r
e
h) is the unique solution to the equation:

R(f(rh0, r
e
h), reh, r

e
h) =R(f(rh0, r

e
h), f(rh0, r

e
h), reh) (8)

and R(·, ·, ·) is as in Equation 5.

Figure 3 depicts hospital h’s operating margin as a function of its readmission rate with different

reduction-cost functions for given parameters when reh = 0.2. The red vertical line, where A is,

indicates the position of the expected readmission rate, reh of the hospital, while the box shows the

current readmission rate. The green vertical line, where B is, corresponds to f(rh0, r
e
h) and is, by

definition, the readmission rate (greater than reh) that generates the same contribution as setting

rh to reh. As discussed above, a hospital has financial incentive to reduce its readmissions if and

only if its current/predicted readmission rate falls in the region [A,B]. We define this region as the

policy effective region – hospitals whose parameters place them in this region will optimally reduce

readmissions in response to the HRRP penalties.

In the graph of Figure 3 there are three parameter regions:

Region (1) (Program-Indifferent Region, [0,A]). A hospital in this region has its original read-

mission rate r0 smaller than its expected readmission reh (here 0.2). Then its contribution is strictly

increasing with its readmission rates, indicating that the optimal decision for the hospital is to not

reduce its readmissions. We call these hospitals program-indifferent (PI) hospitals.
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Region (2) (Program-Effective Region, [A,B]). If the hospital’s original readmission rate rh0 is

greater than reh and the operating margin at current readmission rate is lower than that at reh, then

the hospital’s optimal decision is to reduce its readmission rate to reh (recall that we only allow

hospital to reduce readmissions). In this case, the savings in penalty by reducing the readmission

rate to reh outweigh the loss of contribution. These hospitals are denoted as program-effective (PE)

hospitals.

Region (3) (Non-Program-Effective Region, [B,1]). In this area the margin loss by reducing

readmissions is greater than the savings in penalties. In this case, the optimal strategy for the

hospital is to take no action, and remain at the current readmission rate. We call these hospitals

non-program-effective (NPE) hospitals.

For a hospital h that currently receives penalties (rh0 > reh), there are two measures that affect

its decisions in reducing readmissions. The first is rh0− reh. For large values of rh0− reh the hospital

falls in Region (2). Therefore, the hospital is less likely to reduce its readmissions from a financial

standpoint. The second is f(rh0, r
e
h)− reh, the width of Region (2). The wider Region (2) is, the

more likely it will include rh0 and, consequently, the hospital will be incentivized to reduce its

readmissions. In the corollary below, we summarize comparative statics linking f(rh0, r
e
h)−reh with

the primitives of a hospital (l, dd, dh, λ
a, φ).

Corollary 1. For given primitives, the width of Region (2) (f(rh0, r
e
h)− reh) for a hospital h is

weekly increasing in its percentage of medicare patients (Pmed), the hospital divergence probability

(dh), and the readmission loss factor (l), and weakly decreasing in the cost of reducing readmission

(C(y,x)) and the contribution margin (Cm).

In the following sections, we revisit these comparative statics, and prove that these comparative

statics still hold in a game-theoretic setting with other hospitals’ decision’s affecting hospital h’s

expected readmission rate.

4. Game-Theoretic Model

Building on the model of the single hospital, we construct a game-theoretic model to describe

hospitals’ joint decisions assuming hospitals consider one year into the future. Our main analytical

result is that, despite the difficulty of the game, the hospitals that prefer paying penalties to

reducing readmissions in the single-hospital setting still do not want to reduce readmissions in the

game-theoretic setting. Moreover, the comparative statics results in single-hospital setting remains

valid in the game setting.
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4.1. Single-year game

Recall that hospitals are benchmarked against their peers under the HRRP policy. This creates a

game, in which each hospital maximizes its total operating margin by deciding how much it wants

to reduce the current readmission rate at the beginning of the game. In looking one year into the

future, the hospital will be taking into account how its decision (and those of its peers) affect its

CMS-expected target re for the next year.

We will impose the following assumptions: (1) λ
dh
ij ≡ 0. This assumption implies that a hospital’s

readmission reduction decision will affect other hospitals’ decisions mostly through the expected

readmission and not through the effects on the throughput. The hospital-level divergence probabil-

ity is typically low, such as 7.5% in Corrigan and Martin (1992). Our experience at Northwestern

Memorial Hospital is that this divergence rate is below 30%. For concreteness, consider two hospi-

tals A and B. A reduction of 5% in readmissions (a very significant reduction) in Hospital A leads

to a reduction in the divergence from hospital A to B of at most 0.3∗0.05 = 0.015 (or 1.5%) change

in the input to hospital B. In reality there are multiple (i.e, more than two) hospitals located within

a given geographic are so this number should be even smaller.

(2) dd = 0, and in turn λdij ≡ 0. This assumption assumes that the probability that a patient

in group ij to be readmitted to group i′j′ is zero. As Pearson et al. (2002) documented in their

experiment, the commonest agreed reason for readmission is a relapse or complication of the initial

illness. Among all the subjects in their experiment, less than 14% are identified with new disease

problems.

CMS uses the discharge data at the beginning of the game to evaluate the penalty for each of

the hospitals. The maximization problem for hospital h with rh0 is to choose rh1 which maximizes

R(rh0, rh1, r
e
h1) stated in Equation 5, where reh1 is the new expected readmission rate of the hospital

after CMS observes the readmission reductions from each hospital and re-estimates the parameters

at the beginning of the game.

Each hospital knows all other participating hospitals’ current readmission rate and

expected readmission rate (rh0, r
e
h0). This information is made publicly available by CMS

(http://www.medicare.gov/hospitalcompare/Data/30-day-measures.html). To calculate the exact

expected readmission rate, the hospital has to acquire the patient-level discharge data from all

other hospitals, and re-estimate the HGLM model used by CMS. This, as acknowledged by CMS

(see FAQ in www.qualitynet.org), is a difficult undertaking for an individual hospital: First, the

hospital does not have the patient-level discharge data from all other hospitals, and it has to devote

substantial resources to get access to a subset of this data. Second, CMS changes its methods of

calculating expected readmissions every year, and it is impossible to predict the changes. For exam-

ple, from 2011 to 2012, CMS added the readmission cases from VA hospitals into the estimation

model.
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Accordingly, we assume that each hospital h (instead of precisely predicting it) infers its future

expected readmission rate, denoted as r̄eh1, from the existing data and other hospitals’ actions

according to a certain updating function, r̄eh1 = gh(~r1, ~re0). The hospital h then makes its maximiza-

tion decision based on its estimated expected readmission rate, r̄e1. The only assumptions on the

updating function gh is that it is weakly increasing in ri1 for any hospital i. 2

The dynamics of the game are as follows:

(0) Period 0:

a. rh0 stands for the current readmission rate at hospital h and reh0 stands for the current

year’s CMS-expected readmission rate. These are given.

b. Each hospital h makes a single decision: its targeted value of readmission for next year rh1.

(1) Period 1: Hospital h incurs penalty based on its choice rh1 and the CMS-expected readmission

rate reh1.

In other words, the hospital’s operating margin is set in period 0 and cannot be altered. The

hospital is making a readmission-adjustment decision to maximize operating margin in year 1.

With the proper definition of updating mechanism, the formal definition of the static game with

H hospitals is given below:

Definition 1. Let ~r0 = {r10, r20, ..., rH0} be the initial predicted readmission rates, and ~re0 =

{re10, re20, ..., reH0} be the initial expected readmission rates of the H hospitals. Hospital h’s strat-

egy space is rh1 ∈ [0, rh0]. The payoff function for hospital h is R(rh0, rh1, gh(~r1, ~re0)) defined in

Equation 5.

A Nash Equilibrium in pure strategies is a readmission vector ~r∗1 such that r∗h1 ∈

arg maxrh1∈[0,rh0]R(rh0, rh1, gh(~r1, ~re0) ∀r∗h1 ∈ ~r∗1. A mixed-strategies Nash Equilibrium is π =

{π1, π2, ..., πH} where πh is a probability distribution with support [0, rh0].

The best response for hospital h given the other hospitals’ decisions r−h1 is:

BRh(reh0, rh0, r−h1) =

{
gh(~r1, r

e
h0) if rh0 ∈ [gh(~r1, r

e
h0), fh(rh0, gh(~r1, r

e
h0))],

rh0 otherwise,
(9)

where f is the function defined in Proposition 1 to characterize the PE region of a hospital. Here

we define the no action strategy for hospital h as BRh = rh0.

The effect of one hospital’s decision on the actions of its peer is non-trivial. If one hospital

decides to reduce its readmission rates, its decision effectively lowers the expected readmission

rate for other hospitals, and decreases other hospitals’ payoffs monotonically. Therefore, the action

of each hospital exerts negative externality on other hospitals’ contribution margins. However, a

2 To the extent that the true CMS computations are monotone in the appropriate sense, our results continue to hold
even if hospitals overcome the challenges associated with precise prediction of the CMS targets.
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hospital’s readmission reduction effort may affect other hospitals’ readmission reduction effort in

opposite directions. A reduction decision by hospital h lowers the expected readmission rates for

other hospitals. However, if the expected readmission rate is lowered substantially, some hospitals

may find themselves in Region (2) of Figure 2 and prefer incurring penalties over reducing read-

missions. Therefore, it is unclear if a hospital’s reduction effort would increase or decrease the total

readmissions.

This game has a continuous payoff function and a compact strategy set and therefore has at

least one mixed-strategies Nash Equilibrium (Glicksberg 1952). We cannot, however, guarantee the

existence or the uniqueness of pure-strategy Nash Equilibria for this game.

Lemma 1. There exists at least one mixed-strategies Nash Equilibria in the single-year game for

any continuous updating functions. For a specific updating function, the game may not have a pure

Nash Equilibrium, or it may have multiple equilibria.

In the absence of a uniqueness result, we turn to bounds. We bound the set of possible mixed-

strategy Nash Equilibria, and provide bounds on the number of hospitals that are incentivized to

reduce readmission rates in the game under any equilibrium. First, we provide a lower bound on

the number of hospitals that prefer incurring penalties to reducing their readmission rates in this

game. These are the hospitals on which the policy is not effective. Let (~r0, ~re0) denote the initial

expected and predicted readmission rates of hospitals in the game. We say that the hospital h is a

strongly non-policy-effective (SNPE) hospital if it satisfies the condition:

rh0 > fh(rh0, gh(~r0, r
e
h0)) (10)

where fh is defined in Equation 8. The term strongly non-policy-effected is supported by the

following proposition that shows that for any SNPE hospital, reducing to expected readmission

rates is a dominated strategy.

Proposition 2. For any equilibrium π in the game:

∀h∈ SNPE, πh(rh0) = 1. (11)

In other words, the number of SNPE hospitals provides a lower bound on the number of NPE

hospitals – those that incur penalties but assign probability 1 to no action strategy in any equilibrium

of the game.

By definition, a hospital is SNPE if, considering its current CMS expected readmission rates, and

its current readmission rate, reducing readmissions is a sub-optimal decision. Thus, the number of

NPE hospitals in the single-hospital setting of Section 3 serves as a lower bound for the number
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of hospitals that are SNPE in the game setting: competition introduced by the HRRP policy can

only increase the number of NPE hospitals. In other words, the “worst offenders” are insensitive

to the benchmarking.

We next develop an algorithm that allows us to derive an upper bound on the number of hospitals

which are incentivized to reduce readmissions, PE hospitals, in this game. The algorithm is briefly

summarized as follows:

0. Start with H hospitals with original predicted readmission rates ~r0 = {r1,0, r2,0, ..., rH,0} and

expected readmission rate ~re0 = {re1,0, re2,0, ...reH,0}.

1. Identify all SNPE hospitals. Set n= 0.

2. Update the readmission rate vector according to following:

rh,n+1 =

{
gh(~rn, ~ren) if rh,n > gh(~rn, ~ren), h 6∈ SNPE,
rh,n otherwise.

(12)

In words, for one hospital h that has initial readmission rate rh,n higher than its expected read-

mission rate r̄eh,n at step n, let it reduce to its expected readmission rate. Set n← n+ 1.

3. If there are no hospitals that have reduced readmission rates in 2, terminate the algorithm

and set N = n. Otherwise, go back to 2.

Let the terminal readmission vector of the algorithm be ~rN . A hospital h is an SPE hospital if:

rh,N < rh0 (13)

We say that a hospital is strongly PE (SPE) if it reduces readmissions in some stage of the

algorithm. The following proposition proves that the number of SPE hospitals represents an upper

bound on the number of hospitals that are PE in some equilibrium – i.e, hospitals that have positive

probability to reduce their readmissions in any equilibrium. Combining this upper bound with the

previous lower bound, we get a bound of the effectiveness of the HRRP policy in this model.

Proposition 3. Under any equilibrium, the number of PE hospitals is bounded above by the

number of SPE hospitals:

∀π,
N∑
h=1

1{rh,π<rh0} ≤
N∑
h=1

1{h∈SPE} (14)

Moreover, the set of SPE hospitals is mutually exclusive from the set of SNPE hospitals.

Last, we define a hospital to be strongly program-indifferent (SPI) if its current readmission rate

will be lower than its expected readmission rate in any equilibrium. The set of SPI hospitals is

simply the difference of the set of all hospitals and the sets of SNPE and SPE hospitals.
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4.2. Dynamic game

We extend the single-stage model to an n-stage game where at each stage, hospitals play the one-

stage game described in the previous section. This represents the scenario where hospitals may

update their readmission rates at each period. To capture the plans to increase the penalty cap in

2014 and 2015, we allow the penalty cap to increase from one period to the next, i.e, we have P 1
cap

for the first year, P 2
cap for the second and etc. Let Pmax

cap = maxl=1,...,nP
l
cap be the maximum penalty

cap in the horizon. Allowing hospitals to make readmission reduction decision every period also

enables us to calibrate our model with real data and make predictions about the policy’s outcomes

in the long run.

Our concept of equilibrium in this dynamic setting is sub-game perfect Nash Equilibrium. Since

there is no unique Nash Equilibrium in the single-stage game for any specific updating functions,

the existence and uniqueness of a Nash equilibrium is not guaranteed in the multi-stage game.

As before, we are able to develop bounds. In an equilibrium of the dynamic game (if it exists) a

hospital is SPE if it reduces its readmission in some year (recall that we do not allow hospitals to

increase readmission rates). It is SNPE if it does not reduce readmissions during the game horizon.

Proposition 4. The set of SNPE hospitals in a one-stage static game with Pcap = Pmax
cap is a

subset of the hospitals that do not reduce their readmission rates in the multi-stage dynamic game.

In turn, the number of these SNPE hospitals serves as a lower bound on the number of NPE

hospitals in the multi-year game. Also, the number of SPE hospitals in a single-stage game with

Pmax
cap is greater than the number of PE hospitals that decide to reduce readmissions in any year in

any equilibrium of the multi-stage game.

The intuition is as follows: The number of SNPE hospitals in the single-stage game defined above

is the hospitals that do not want to reduce readmissions even if the penalty cap is the maximum

penalty cap forever. In particular, these hospitals will not be incentivized to reduce readmissions

if the penalty gradually approaches the maximum penalty cap (from below). Similarly, the SPE

bound in the proposition is derived with the maximum penalty cap. It is intuitively clear that

the number of hospitals that are incentivized to reduce readmissions when penalty cap gradually

increases to the maximum penalty cap should be bounded above the number of SPE hospitals with

the maximum penalty cap.

5. Data and Simulation

In this section, we use hospital data from California in fiscal year 2013 to identify initial conditions

of each hospital for our game-theoretical model. We use the data to better understand the value

of competition that the HRRP policy introduces for the effectiveness of the policy and to propose
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Variable Mean Std. Dev. Min. Max.
CMS no 50321.886 225.372 50002 50764
Available bed occupancy 0.597 0.138 0.075 0.976
Revenue fraction from medicare 0.362 0.108 0.079 0.792
Expected readmission 21.586 1.475 17.136 26.545
Predicted readmission 21.393 2.263 16.193 30.931
AMI no discharge 157.467 115.374 25 599
AMI predicted readmission 20.221 3.067 12.3 35.8
AMI expected readmission 20.337 2.16 15.2 29.4
HF no discharges 363.554 209.231 31 1714
HF predicted readmission 24.461 2.459 18 32.2
HF expected readmission 24.681 1.331 20.7 28.5
PN no discharges 305.799 163.521 43 1146
PN predicted readmission 18.64 2.226 14 27.7
PN expected readmission 18.827 1.453 14.7 23.5

Table 1: Summary statistics of hospital-level data in California

model-based predictions to the effect of the HRRP on hospitals’ readmission reduction efforts.

In Section 5.1, we describe the datasets. Simulation methods, necessary assumptions, and results

are reported in Section 5.2. We validate our model predictions of SNPE hospitals with hospitals’

readmission reduction efforts in practice in Section 5.3.

5.1. Data

We combine two datasets. First, the financial and operational data for 434 hospitals in California is

obtained from the Office of Statewide Health Planning and Development’s (OSHPD)oshpd.ca.gov,

a state government organization that provides and ensures accessible healthcare in California. For

fiscal 2013, the OSHPD dataset documents the fraction of each hospital’s revenue derived from

Medicare patients; see Table 1.

The CMS website lists the CMS-expected and predicted readmission rates for each IPPS hospital

for fiscal year 2013. These readmission rates are estimated from the hospitals’ discharge data from

July 2008 to June 2011. Among 434 California hospitals in the OSHPD dataset, there are 312

IPPS hospitals that can be matched with the CMS data. The HRRP policy only targets IPPS

hospitals, and therefore we can successfully match all HRRP-targeted hospitals in this data set.

According to the selection rule of the HRRP, the hospitals with small number of readmissions in

the monitored diseases, namely AMI, HF, and PN, are not considered in the penalty evaluation.

Out of these hospitals that have CMS-expected and CMS-predicted readmission rates, 9 of them

are missing the financial data. After removing these hospitals in the dataset, we have 186 hospitals

for AMI, 250 hospitals for HF, and 249 hospitals for PN. The data is summarized in Table 1:

In our model, we assumed the payment per patient depends only on the disease and insurance

type. This assumption is valid for insurance programs with a pay-per-case payment structure, such
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Figure 4: Histogram of Hospital Utilization

as Medicare and Medicaid. Private insurance programs may adopt different payment structures

where the payment depends also, for example, on the length of stay (pay-per-diem) and the quality

of treatment (pay-per-performance). Small changes to readmission rate should not, however, affect

significantly the payment given that most hospitals in our dataset are not fully utilized: most

hospitals in our dataset have utilization rates smaller than 85%; see Figure 4. Small changes to

the readmission rates should not then have a big impact on the utilization of physicians, and in

turn on the service quality of patients (Kc and Terwiesch 2009). There is also empirical evidence

that readmission-reduction programs do not increase the length of stay of patients (Hansen et al.

2013), and therefore, changing readmissions is unlikely to change the average payments under

pay-for-performance or pay-per-diem schemes.

5.2. Simulation and Results

We consider two cases: (i) hospitals can make decentralized decisions for each disease, and when

they reduce readmissions for each disease, they only consider the cost and benefit related to that

disease’s processes, (ii) hospitals make centralized decisions and evaluate revenue and penalties

aggregated from all three monitor diseases. In both cases, hospitals are modeled to maximize their

undiscounted operating margin from 2013 to 2020.

As we proved in Section 2, the single-hospital setting, where hospitals are myopic and do not

consider the interaction with other hospitals through the HRRP benchmarking, provides a lower

bound on the number of SNPE hospitals. Similarly, the number of SPE hospitals is an upper bound

on the number of hospitals that have positive probability to reduce their readmission rates in at

least one equilibrium. Since these two sets are mutually exclusive by construction, the remaining

hospitals do not incur penalties and are not incentivized to reduce readmissions in any equilibrium.
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In order to numerically compute these bounds for the two models, we have to specify cost functions

and updating functions:

(1) Costs: We assume that cost functions are of the form:

Ch(r,x) =Cv
h(r−x)α +Cs

h

1

r
(15)

where α ∈ [0,3], Cv
h = Πh(0)Cv and Cs

h = Πh(0)Cs. The first term in the cost structure, Cv(r −

x)α represents the variable cost of reducing readmission rates from r to x. When α ∈ (0,1), the

cost structure is concave, representing economies of scale in reducing readmission rates. The cost

is convex when α > 1 representing a marginally increasing difficulty in reducing readmissions.

The second term captures dependence of the cost on the initial starting point. For hospitals that

have initially low readmission rates reducing further might be expensive – some small amount of

readmission might be unavoidable and not easily further reduced by process changes.

In the following simulation we set Cv =Cs = 0.001, representing a cost of 0.1% of its total revenue

for a hospital to reduce its readmissions by 1%.

(2) Updating functions g(·, ·): Hospital h predicts r̄eh1 as the average of all readmission rates.

In other words r̄eh1 is the average readmission rates of {rh1, ∀h} weighted by the number of patients

in each hospital. If all H participating hospitals have the same number of patients, then reh1 is

simply 1
H

∑
k rh1. We write r̄eh1 = g(~r1), where ~r1 = {r11, r21, ..., rH1} is vector representing the new

readmission rates of all hospitals.

5.2.1. Decentralized Model For a large teaching hospital like Northwestern Memorial it

is reasonable to assume that different diseases are managed by different teams and readmission

reduction decisions are made “locally” at the disease level. In this subsection we assume that

process changes to reduce readmissions are made at the disease level. This is implemented by

assuming that the each disease takes the maximum penalty cap as its own penalty cap. In this

decentralized setting, the numerical study reduces to three single-disease models.

According to the latest version of the HRRP policy, the maximum cap penalty is 2% for 2014,

and 3% thereafter. There are four parameters in the numerical study corresponding to the relevant

parameters in the model of Section 2 (1) Cm, the contribution margin, (2) (1−l)(1−dh), the product

of the inverse loss factor and inverse hospital divergence rate, (3) the cost function parameter α.

In our base case, we assume that the contribution margin is 40%, the product is 1 (l= dh = 0%),

and there is no cost Cv =Cs = 0. We later report results for a broader set of parameters; see Tables

2-4.

In Figure 5, we provide a graphic view of PI, PE, and NPE hospitals for each disease for the

single-hospital setting (left-hand side) and the dynamic game setting (right-hand side) with the
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bounds based on Strongly PE (SPE) and Strongly NPE (SNPE) hospitals. In each panel of Figure 5,

the horizontal axis is the difference between a hospital’s predicted readmission rate and its expected

readmission rate for that disease. The vertical axis shows the percentage of the contribution margin

of a hospital from Medicare patients. Each point on the graph represents a hospital. Circles, crosses,

and triangles represent PI, PE, and NPE hospitals in the single-hospital setting and SPI, SPE,

SNPE for the game setting.

As evident in Figure 5, for a hospital with a CMS-predicted readmission rate greater than its

expected readmission rate, the lower the percentage of its revenue from Medicare patients, the lower

the financial incentive to reduce readmissions. The loss in margin from reducing the readmission

rate is greater for a hospital with higher readmission rate. If the sum of the readmission reduction

cost and the loss of contribution outweighs the savings from penalties, the hospital is no longer

financially incentivized to reduce its readmission rate. Importantly, even assuming that there is no

process cost to reduce readmissions, with a maximum penalty of 0.03, about 10% of hospitals still

prefer incurring penalties over reducing readmissions.

Further, by comparing the number of SPE hospitals in the single-hospital and the dynamic

game setting, we quantify the maximum value of competition that the HRRP policy creates by

benchmarking hospitals against their peers. Hospitals that are SPE hospitals in the dynamic game

(but are PI in the single-hospital setting) are those that may reduce readmission rates due to the

fact that the other hospitals’ reduction effort changes the CMS-expected readmission rate in the

subsequent years. As we show in this numerical study, when hospitals in this dataset consider the

strategic interactions between them, there are at most 1 in 10 hospitals that become incentivized

but would have not been such without the competition induced by the HRRP benchmarking.

This result is robust to the updating function g(·). Intuitively, the SPE hospitals (see 5) are those

that have an initial readmission rate that is relatively close to the expected readmission rate.

Their readmission improvements are, thus, relatively small and bare little effect on the expected

readmission rates of other hospitals.

Tables 2 and 3 depict the number of PI, SPE, and SNPE hospitals for a broad set of parameters.

We consider the product of inverse readmission loss factor and inverse hospital-level divergence

rate between 0% and 40%, the percentage of contribution margin of hospitals between 40% and

75%, and the cost of reducing readmissions being zero, concave α = 0.5, or convex, α = 2. For

values α≥ 0, the cost coefficients are Cv =Cs = 0.001.

Tables 2, 3, and 4 confirm that, as the readmission loss factor increases, hospitals are more

inclined to reduce their readmissions. Note that by CMS’s measure of readmission rates, a patient

who is readmitted to a different hospital still contributes to the readmissions of the hospital from

which the patient was initially discharged. Consequently, increasing the divergence probability
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Figure 5: Model predictions on the hospitals’ readmission reduction decisions in the base case. The
single-hospital setting is on the left-hand side. Different rows correspond to different monitored
diseases.

among hospitals is effectively equivalent to reducing the contribution from readmitted patients on

average, and in turn decreasing the number of SNPE hospitals. Moreover, as the cost of reduc-

ing readmissions increases, the number of hospitals that are SNPE dramatically increased. This
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No Cost Concave Cost Convex Cost

(1− l)× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100%
40% 54% 35% 10% 54% 17% 27% 54% 18% 27%
75% 54% 23% 22% 54% 5% 39% 54% 5% 39%

80%
40% 54% 38% 7% 54% 23% 22% 54% 23% 22%
75% 54% 29% 16% 54% 12% 32% 54% 12% 32%

60%
40% 54% 43% 2% 54% 26% 18% 54% 26% 19%
75% 54% 35% 10% 54% 15% 30% 54% 15% 30%

Table 2: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for the Californian hos-
pital data set with 40% percentage of contribution margin for Acute Myocardial Infarction
(AMI)

No Cost Concave Cost Convex Cost

(1− l)× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100%
40% 57% 32% 10% 57% 13% 29% 57% 13% 29%
75% 57% 23% 19% 57% 6% 36% 57% 6% 36%

80%
40% 57% 37% 5% 57% 17% 25% 57% 17% 25%
75% 57% 28% 14% 57% 8% 34% 57% 8% 34%

60%
40% 57% 40% 2% 57% 21% 21% 57% 21% 21%
75% 57% 32% 10% 57% 12% 30% 57% 12% 30%

Table 3: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for the Californian hos-
pital data set with 40% percentage of contribution margin for Heart Failure (HF)

No Cost Concave Cost Convex Cost

(1− l)× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100%
40% 54% 31% 14% 54% 16% 29% 54% 16% 29%
75% 54% 18% 27% 54% 8% 36% 54% 8% 36%

80%
40% 54% 37% 8% 54% 20% 24% 54% 20% 24%
75% 54% 22% 22% 54% 12% 33% 54% 12% 33%

60%
40% 54% 42% 3% 54% 26% 18% 54% 26% 18%
75% 54% 31% 14% 54% 15% 30% 54% 15% 30%

Table 4: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for the Californian hos-
pital data set with 40% percentage of contribution margin for Pneumonia (PN)

suggests that investment in readmission reduction technology is crucial to encourage hospitals to

reduce readmissions. Last, we observe that the higher the percentage of contribution margin that

a hospital has, the more contribution it generates from each patient admission so that the oppor-

tunity cost associated with reducing readmissions is larger. This implies that the percentage of

contribution margin of a hospital has an inverse relation with its inclination to reduce readmissions.
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5.2.2. Centralized Model In this centralized model, we assume that hospitals are making

centralized readmission reduction decisions. They evaluate the penalties from all diseases and the

cost of reducing readmissions in all diseases, and make a centralized decision where they may

consider the trade-offs between investments in the various diseases. In this model, the maximum

penalty cap represents the maximum percentage of penalties that a hospital pays in aggregation

of all monitored diseases. Since here it is only the aggregate (across diseases) penalty that is

capped, hospitals may be penalized more for readmissions. In this decision model, the definition of

maximum penalty is consistent with the definition used by CMS.

Computing the optimal decision (or data-based bounds) for this centralized model is challenging

since the payments from each disease vary dramatically from geographic location to another and

from one year to the next (in the decentralized model such changes can be normalized). However,

the intersection of the individual-disease SNPE hospitals provides a lower bound for the number

of SNPE hospitals in the centralized model: the number of hospitals that receive penalties but do

not reduce readmissions in any disease is bounded by the number of hospitals in the intersection

of the sets of SNPE hospitals for three monitored diseases. Moreover, the union of the sets of SPE

hospitals for three monitored diseases is an upper bound for the number of hospitals that decide

to reduce readmissions when they make centralized decisions. Table 5 summarizes the results for

the same broad set of parameters that have been considered above.

No Cost Concave Cost Convex Cost

(1− l)× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100%
40% 34% 62% 2% 56% 33% 9% 56% 34% 9%
75% 47% 46% 6% 70% 16% 13% 70% 16% 13%

80%
40% 32% 66% 1% 50% 42% 7% 50% 42% 7%
75% 40% 55% 4% 63% 24% 12% 63% 24% 12%

60%
40% 29% 70% 0% 47% 46% 6% 48% 45% 6%
75% 34% 62% 2% 58% 31% 10% 58% 31% 10%

Table 5: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for the Californian hos-
pital data set with 40% percentage of contribution margin for Centralized Decisions

Importantly, also in the centralized model–and even when the cost of reducing readmissions

is 0–there are still hospitals that pay penalties instead of reducing readmissions. Moreover, this

portion has increased substantially if the cost of reducing readmissions is increasing. As the set of

SNPE is based on the intersection of disease-level SNPE, all the comparative statics remain the

same as in the decentralized case.
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5.3. Model Validation

Recall from the HRRP timeline in Figure 1 that HRRP was signed into law along with the Afford-

able Act Care on March 20, 2010. The first penalty was charged in fiscal year 2013, which was

based on the discharge data from July 2008 to July 2011. Since the hospitals became aware of

the policy after 2010, the first penalties, all affected by hospital actions after HRRP was signed

into law, are those levied in 2015, as they depend on discharge data from July 2010 to July 2013.

The hospitals’ penalties for 2015 became publicly available on April 30, 2014–a month before the

date of this paper. For each of the hospitals, we use the difference between its readmission ratios

in fiscal years 2013 and 2015 as a proxy for its readmission reduction efforts from 2010 to 2013.

For example, if a hospital’s excess readmission ratio in 2013 is larger than that in 2015, it suggests

that this hospital did reduce its readmission rates from 2010 to 2013.

Our model is stylized and designed to capture financial trade-offs and identify bounds rather

than predict exact outcomes. The key insights we derive from our model is the characterization

of SNPE hospitals–those that prefer paying penalties over reducing readmission rates in the long

run. The key observation is that the actual SNPE hospitals coincide with those predicted by our

model.

PN HF AMI
Number of SNPE hospitals (Model) 8 5 12
Number of SNPE hospitals not paying penalties for 2015 0 (0%) 0 (0%) 0 (0%)
Number of SNPE hospitals reducing readmissions in 2010-2013 2 (25%) 1 (20%) 3 (25%)

Table 6: Number of SNPE hospitals according to the prediction of the model that actually reduce
readmissions or do not pay penalties by fiscal year 2015.

Table 6 takes the SNPE hospitals identified by our model and displays their actual readmission

reduction. The first row reports the number of hospitals that are classified as SNPE hospitals by

our model (used here with the baseline parameters; see Section 5.2) for each of the three monitored

diseases. Since we assume, for this section, that hospitals’ readmission reduction efforts are costless,

the set of SNPE hospitals is a subset of the set of SNPE hospitals under any positive reduction

costs. In other words, assuming costless reduction efforts is a more stringent test of the predictive

power of our model. There are, for example, 8 SNPE hospitals for the disease PN. Having identified

these 8 hospitals we look for their actual performance in the data and find that, indeed, all of them

incurred penalties–this is reported in the second row. In this metric our model-based prediction of

the SNPE hospitals does capture an lower bound on the hospitals that prefer paying penalties over

reducing readmissions. The third row reports how many of these 8 hospitals actually did reduce

readmissions in 2010-2013. Most SNPE hospitals did not reduce readmissions in the data. Among
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Figure 6: Excess readmission ratios for 2013 and 2015 for different sets of hospitals and different
disease groups.

those that do reduce readmission (a total of 6 across the three diseases) none reduces it by more

than 5%.

To further support the “separating” power of the model, we compare the distributions of actual

readmission reduction efforts for SNPE, SPE, and SPI hospitals (classified by the model). Figure 6

displays the histogram of the differences of excess readmission ratios in 2013 and 2015 (reflecting

hospitals’ readmission reduction efforts in 2010-2013) for the different sets of hospitals (i.e. SNPE,

NPE, PI) and different diseases. For a specific disease, blue, green, and red histograms correspond

to the SNPE, SPE, and SPI hospitals respectively. Clearly, the distribution of SNPE hospitals is

more skewed to the right while the distribution of the PE hospitals are more skewed to the left. This

suggests that SNPE hospitals exert less effort in reducing readmissions compared to SPE hospitals

in practice, which suggests that the model prediction is consistent with the hospital readmission

reduction efforts in practice.

Last, we find that a significant number of SPI hospitals did reduce their readmissions even though
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they did not pay any penalties. This suggests that, for the hospitals with better performance, factors

other than financial incentives, perhaps such as ethics and reputation, play an important role in

process improvements and readmission reduction decisions. This is not surprising. Our model is

stylized and designed to capture financial trade-offs and identify bounds rather than predict exact

outcomes. There is an opportunity here to explore other incentives as more data becomes available

on hospital readmission-reduction efforts in response to HRRP.

6. Discussion

There are several noteworthy insights from our single-hospital model, game-theoretical model and

the simulation results. The first five correspond to comparative statics. Whereas some of the com-

parative statics are intuitively expected, the study assigns magnitudes to them and draws corre-

sponding conclusions. The latter items correspond to the value of competition and its relation to

the single-hospital setting.

First, the HRRP policy is relatively more effective for hospitals that have higher readmission

divergence probability. Such hospitals are typically located at more economically developed areas.

Patients who live in urban areas, have access to more hospitals and better healthcare services

relative to patients in the rural areas. The HRRP policy may magnify this healthcare quality gap

as hospitals in rural areas will be less incentivized to reduce readmissions.

Second, despite its effectiveness of reducing readmission rates in general, the HRRP policy is

less effective for hospitals with initial poor performance. These are hospitals with their readmission

rates much greater than their CMS-expected readmission rates. The larger this difference is, the

lower the financial incentive for a hospital to reduce readmissions. The HRRP policy may fail to

induce improvement at these. Part of this ineffectiveness may stem from the presence of a low

penalty cap that, in essence, protects these hospitals. However, even if the maximum penalty cap

is exceedingly high, e.g. 8%, the worst performing 5% hospitals are still not incentivized to reduce

their readmissions. In Figure 7, we included the number of SNPE, SPE, and PI hospitals for each

of the monitored diseases applying the decentralized game from Section 5.2.1. We increase Pcap

from 1% in 2013 to 5% in 2020. The simulation here is based on a loss factor is 0%, readmission

divergence probability is 0%, the average percentage of contribution margin for hospitals is 40%

and there is a linear cost of reducing readmissions.

The number of SNPE hospitals is, as expected, decreasing with the maximum penalty cap.

However, the effect diminishes as the maximum penalty cap increases. In particular, changing Pcap

from 3% to 9%, already captures more than 90% of the reduction in number of SNPE hospitals.

More importantly, the set of SNPE hospitals stabilizes at 5% for HF and PN when the maximum
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Figure 7: Equilibrium Behavior of Hospitals under Different Maximum Penalty Caps (α= 1, Cv =
0.01, l= 0.2, dh = 0.15, percentage of contribution margin=40%)

penalty cap is increasing from 3% to 9%. Yet, more than 5% of hospitals that receive penalties are

not financially incentivized to reduce readmissions when the maximum penalty cap is as high as

9%. To incentivize these hospitals, increasing the penalty cap is not sufficient. CMS could instead

consider a nonlinear penalty structure to incentivize worse performers by, for example, classifying

hospitals based on performance and benchmarking hospitals with similar performance amongst

themselves.

Third, hospitals with a low percentage of medicare patients are less likely to reduce their read-

missions under the current policy. As the penalty is proportional to the contribution of a hospital

from medicare patients (but revenue reduction due to reduced readmission applies to all patients),

the penalty is less influential if a hospital’s earnings from medicate patients are small relative to

its total earnings. This property is inherent in the current government healthcare payment system,

and may be difficult to change. One could utilize the penalties collected to reward hospitals with

good performance. Absolute rewards (rather than rewards proportional to the revenue of a hospital

from Medicare patients) may increase the impact of the current HRRP policy over these hospitals.

Fourth, hospitals with higher contribution margins are less likely to reduce readmissions in

response to the HRRP policy. The higher the contribution margin, the more contribution a hospital

earns from each readmission. Therefore, a higher contribution margin for a hospital implies that

reducing readmissions is more costly for the hospitals which reduces its incentive to reduce read-

missions in equilibrium. If treatment costs do not differ dramatically across hospitals, controlling
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Medicare payments to hospitals (towards having more uniform contribution margins) can help to

incentivize hospitals to reduce readmissions under the HRRP policy.

Fifth, the HRRP policy is very effective in incentivizing hospitals that receive penalties to reduce

their readmissions if the cost associated with reducing readmissions is negligible. From Table 2,

Table 3 and Table 4, under base case parameters, the numbers of hospitals paying penalties but

not reducing readmissions are dramatically reduced by more than a half for all diseases if we move

from convex cost to no cost. This points to the value of research projects (such as project BOOST)

that aim to identify effective but cheap process changes to reduce readmissions.

Sixth, the HRRP policy creates a game between hospitals. As we proved in Section 2, even in

the base case, the game induced by the HRRP policy is not guaranteed to have a pure-strategy

Nash Equilibrium. Moreover, the game may have multiple pure-strategy and mixed-strategy Nash

Equilibria. This uncertainty in outcomes reduces the visibility into the future for policy makers and

hampers pro-active decision making by hospitals. In contrast, our findings based on the California

data suggest that the level of uncertainty may be limited as the single-hospital setting captures

the essential effects of the policy.

Finally, we have provided an low upper bound for the value of competition introduced by the

HRRP policy. When hospitals consider the strategic interactions between them, there are at most

one in ten hospitals that will become incentivized for AMI, HF, and PN respectively.

7. Conclusion

October 1, 2012 marked the nationwide initiation of the Hospital Readmissions Reduction Pro-

gram (HRRP), an effort by the Centers for Medicare and Medicaid Services (CMS) to reduce the

frequency of re-hospitalization of Medicare patients. According to CMS, approximately two thirds

of U.S. hospitals will incur penalties of up to 1% of their reimbursement for Medicare patients,

adding up to $300 million in 2013 alone.

Our analysis started from considering the response of the individual hospital’s in isolation ignor-

ing the effects of the interactions with other hospitals through the benchmarking procedure of the

CMS. We then proceeded to incorporate the dependence created by this policy and generated valid

bounds on the effectiveness of the policy and connect the insights in the single-hospital setting to

the game-theoretical setting. We applied our model to data of California hospitals, and quantified

the effectiveness of the policy. We validate our model using hospitals’ readmission reduction efforts

during the first phase of the policy implementation from 2010 to 2012 (corresponding to penalties

in fiscal year 2013 to 2015). The empirical evidence gives initial support to the predictive power of

our model in identifying the SNPE hospitals.

This study can have policy implications to the extent that it provides a way to study the

effectiveness of HRRP. It explicitly captures the game-theoretic aspect of this policy and relates
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the individual optimization (the single-hospital setting) to the game setting. Our models can be

used to evaluate the effectiveness of potential changes to the HRRP policy in the future.

The success of HRRP may be affected by various issues. In this paper we take hospitals as

operating-margin maximizers. Readmission-reduction consideration may include other factors, such

as the professional ethics of giving good medical services and the peer pressure from nearby hos-

pitals given the increased visibility of performance metrics. Such considerations may increase its

effectiveness relative to what our models can predict. As time passes, data will reveal the hospi-

tals’ readmission reduction decisions. Once such data is available it is our hope that our models

can serve as a starting point for structural estimation on readmission reduction costs, hospitals

incentives towards readmission reduction, and other factors that affect the policy outcomes.

Predicting the effectiveness of policy regulations on the individual decision making of hospitals

is challenging. We hope that our paper serves as a starting point towards more elaborate analysis

on the economic and financial consequences of the HRRP policy.

Appendix

A. CMS’s Estimation of readmission rates

CMS computes rh and reh for every hospital using patient level discharge and readmission data as follows:

Let Yilk denote a binary variable indicating whether a discharge l of disease i in hospital k is associated

with a readmission. For each discharge represented by Yilk, CMS collects the corresponding patient case

covariates, denoted as Zilk. The logistic hierarchical generalized linear model is used to estimate the average

and hospital-level intercepts to predict the readmission probability for each discharge:

log(P (Yilk = 1)) = αik +βiZijk

αik = µi +ωik ωk ∈N(0, τ2)
(16)

where, for each disease i, αik is the hospital-level intercepts for hospital k, µi is the average intercept, and

βi is the coefficient of case mix covariates.

With hospital-level and average intercepts as well as the coefficient of case mix covariates, CMS calculates

the risk-adjusted predicted and the expected readmission rate for each hospital k by taking the average of

the predicted readmission probabilities for all discharges of that hospital:

reik =
1

Nki

Nki∑
j=1

1

1 + e−µi−βiZilk

rpik =
1

Nki

Nki∑
j=1

1

1 + e−αik−βiZilk

(17)

where nik is the number of Medicare discharge cases with disease i in hospital k.
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B. Proof of Proposition 1

Recall the maximization problem in Equation 5:

x∗ = arg max
x≤r

R(r,x, re) = arg max
x≤r

Πh(r)(1−Ph(x, re))−C(r,x) (18)

where Πh(x), Ph(x, re), and C(r,x) are defined as:

Πh(x) = Πh(0)
1

1−x

Ph(x, re) =
Pmed
Cm

min(max(
x

re
− 1,0), Pcap)

C(r,x) =Cv(r
α−xα)

(19)

For x∈ [0, re], Π′k(x) =− 1
(1−x)2 > 0, C ′(r,x)< 0, and P (x, re) = 0. This means that a hospital’s revenue is

an increasing function of its readmission rate if the readmission rate is less than re. Therefore, the optimal

solution for hospitals in this region is re.

Denote xm = inf{x : Ph(x, re) = Pcap}. Similarly, if r > xm, for x∈ [xm, r], R(r,x, re) is increasing in x, and

C(r,x) is decreasing in x. Therefore, the optimal readmission rate in the region [xm, r] is r.

Last, let us consider the case where x∈ [re, xm]:

R′(r,x, re) =
Cm

(1−x)2
Πh(0)[

Pmed

Cm
(1− re)− re
re

]− dC(r,x)

dx
(20)

where α∈ 0,1

Since dC(r,x)

dx
< 0, if Pmed

Cm
> re

1−re
, dR(r,x,re)

dx
> 0 ∀x ∈ [re, xm], and in turn the optimal choice is xm. If

Pmed

Cm
< re

1−re
, since | dC

2(r,x)

dx2
| ≤ 1

(1−x)3 ∀x∈ (0,1), we guarantee that dR(r,x,re)

dx
has the same sigh ∀x∈ (re, xm).

Therefore, we guarantee that the optimal choice is between re and xm.

Overall we conclude that a hospital’s optimal decision is either reducing to the expected readmission rate

re or staying at the current readmission rate r.

C. Proof of Corollary 1

Based Equation 8, f(rh0, r
e
h) is defined as:

R(f(rh0, r
e
h), reh, r

e
h) =R(f(rh0, r

e
h), f(rh0, r

e
h), reh) (21)

which is equivalent as:

ΠP
h (re)−ΠP

h (f(rh0, r
e
h)) +Ph(f(rh0, r

e
h), re)−C(f(rh0, r

e
h), re) = 0 (22)

Therefore, if φmed increases, Ph(f(rh0, r
e
h), re) increases, and f(rh0, r

e
h) increases for a fixed reh to balance

Equation 22. Similarly, if dh or l increases, ΠP
h (re)−ΠP

h (f(rh0, r
e
h))+Ph(f(rh0, r

e
h), re) increases, and f(rh0, r

e
h)

increases for a fixed reh.

If Cm increases, ΠP
h (re)−ΠP

h (f(rh0, r
e
h)) decreases. Therefore, Ph(f(rh0, r

e
h), re)−C(f(rh0, r

e
h), re) increases,

which means f(rh0, r
e
h) decreases for a fixed reh. Similarly, if C(f(rh0, r

e
h), re) increases, then ΠP

h (re) −

ΠP
h (f(rh0, r

e
h)) +Ph(f(rh0, r

e
h), re) increases, which means f(rh0, r

e
h) decreases for a fixed reh.
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D. Proof of Lemma 1

Notice that the payoff function described in Equation 5, is continuous in the hospital’s readmission rate.

Moreover, the strategy set for each hospital [0, rh0] is convex. According to Glicksberg’s Theorem (Glicksberg

1952), this game has at least one Nash Equilibrium in mixed strategies.

To ease our following proofs, we have considered a concrete updating function. The updating functions

we consider here is that hospital h calculates r̄eh1 as the average of all readmission rates. In other words r̄eh1

is the average readmission rates of {rh1, ∀h} weighted by the number of patients in each hospital. If all

H participating hospitals have the same number of patients, then reh1 is simply 1
H

∑
k
rh1. We denote this

updating mechanism as r̄eh1 = g1(~r1), where ~r1 = {r11, r21, ..., rH1} is vector representing the new readmission

rates of all hospitals.

To prove that the game may not have pure Nash Equilibria, consider the following counter example:

There are 3 hospitals with initial readmission rates ~r0 = {0.24,0.244,0.249}. Assume that all hospitals

have all revenue from medicare patients (∀h ∈ {1,2,3}, Pmed,h = 1). Also assume that there is no cost to

reduce readmissions (α= 0), and the maximum penalty is 1% (Pcap = 1%). Let the updating mechanism be

g1(~r0), with all hospitals having same number of patients. In order words, g1(~r0) = r01+r02+r03
3

.

According to Proposition 1, each hospital only has two best-response actions: reducing to the average

(g1(~r0)) or staying at current readmission rates (rh0). Therefore, we only have four possible pure-strategy

Nash Equilibria: (1) hospital 2 does not reduce, and hospital 3 reduces: {0.24,0.244,0.242}, (2) both hospital

2 and hospital 3 reduce: {0.24,0.24,0.24}, (3) neither hospital 2 nor hospital 3 reduces: {0.24,0.244,0.249}.

In (1), hospital 2 is better off to reduce to 0.241, indicating that (1) is not an equilibrium. In (2), hospital

3 is better off to stay at 0.249. In (3), hospital 3 gets more revenue if it reduces to the average readmission

rates 0.242. Therefore, there is no pure-strategy Nash Equilibrium in the game described above. A similar

example can be constructed with g2(~r0, r
e
h0).

To show that the game may have multiple equilibria, consider the following example:

Consider the game discussed above but now with ~r0 = {0.24,0.251,0.252}. There are four candidate pure-

strategy Nash Equilibria: (1) hospital 2 does not reduce, and hospital 3 reduces: {0.24,0.251,0.2455}, (2)

hospital 2 reduces while hospital 3 does not reduce: {0.24,0.246,0.252}, (3) both hospital 2 and hospital 3

reduce: {0.24,0.24,0.24}, (4) neither hospital 2 nor hospital 3 reduce: {0.24,0.251,0.252}. It is easy to verify

using Equation 5 that both situation (1) and (2) are pure-strategy Nash Equilibria. Hence, the game could

have multiple pure-strategy Nash Equilibria.

E. Proof of Proposition 2

By definition, a hospital h is a SNPE hospital if it satisfies:

rh0 > fh(rh0, gi(~r0)) (23)

By the definition of fh(rh0, gi(~r0, r
e
h0)) in Equation 8, fh(rh0, gi(~r0, r

e
h0)) > reh0, indicating that SNPE hos-

pitals incur penalties. From Equation 8, fh(rh0, gi(~r0, r
e
h0)) is increasing in gi(~r0, r

e
h0). From the definition

of updating functions, it is clear that gi(~r′, r
e
h0)≥ gi(~r, reh0) if ~r′ ≥ ~r for i= {1,2, ...,H}. Moreover, since we
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restrict a hospital h’s strategy set to [0, rh0], at any equilibrium of the game, the corresponding readmission

vector is less than or equal to initial readmission vector, ~r1 ≤ ~r0.

Therefore, for any equilibrium π with the equilibrium readmission vector ~rπ1, we have that:

h∈ SNPE => rh0 > fh(rh0, gh(~r0, ~re0))≥ fh(rh0, gh( ~rπ1, ~re0)) (24)

Therefore, for hospitals that satisfy Equation 10, reducing readmissions is a strictly dominated strategy, and

at any possible equilibrium, SNPE hospitals do not reduce readmissions. Formally:

∀π, ∀h∈ SNPE, πh(rh0) = 1, (25)

which concludes the proof.

F. Proof of Proposition 3

By step 2 of the algorithm, rh,d 6= rh,d−1 if rh,1 > gh(~rd−1, r
e
h,d−1) and h 6∈ SNPE. This means that if h ∈

SNPE, rh,d = rh,d−1 ∀d. Therefore, by construction, the set of SNPE hospitals and the set of SPE hospitals

are mutually exclusive.

To show that the number of SPE hospitals provide an upper bound on the number of hospitals that reduce

readmissions in any equilibrium, let us consider the readmission vector that the algorithm generates, denoted

as ~rT . For any equilibrium π with readmission vector ~rπ, following Proposition 3, the SNPE hospitals will not

reduce readmissions. Fix one equilibrium π, for any hospital h that reduces readmissions in this equilibrium,

it must satisfy:

h 6∈ SNPE

rh0 > gh( ~rπ, ~re0)
(26)

By definition, gh( ~rπ, r
e
h0) is increasing in ~rπ. Therefore, if ~rT ≤ ~rπ ∀π, then ∀π rh0 > gh( ~rπ, r

e
h0) => rh0 >

gh( ~rT , r
e
h0), which would imply that the number of hospitals that reduce readmissions in any equilibrium is

bounded by the number of SPE hospitals generated by the algorithm.

Suppose that ∃π s.t. ~rT > ~rπ, then it means that ∃h such that rh,T > rh,π and in turn rh0 > gh( ~rT , r
e
h0).

By the termination condition of the algorithm, we know that

rh0 6∈ [gi( ~rT , r
e
h0), f(rh0, gi( ~rT , ~re0))] (27)

with f(rh0, gh( ~rT , r
e
h0)) defined in Equation 8. Since f(rh0, gh(~r, reh0)) is increasing in gh(~r, reh0), we have:

~rT ≥ ~rπ => gh( ~rT , r
e
h0)≥ gh( ~rπ, r

e
h0) => f(rh0, gh(~rT , ~re0))≥ f(rh0, gh(~rπ, ~re0)) (28)

Therefore,

rh0 > f(rh0, gh( ~rT , ~re0)) => rh0 > f(rh0, gh(~rπ, ~re0)) => rh0 6∈ [gh( ~rπ, ~re0), f(rh0, gh( ~rπ, ~re0))] (29)

Hence it is not optimal for the hospital h to reduce its readmissions. We reach a contradiction, and 6 ∃π ~rT ≥ ~rπ.
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G. Proof of Proposition 4

Let us first prove that the set of SNPE hospitals in the single-year game where Pcap = Pmax
cap remains a valid

lower bound. Rewrite equation 5 as:

R(Pcap, rh0, rh, r
e
h) = ΠP

h (rh)−Ph(rh, r
e
h, Pcap)−C(rh0, rh) (30)

where Ph(rh, r
e
h, Pcap) is the penalty under the cap Pcap. It is easy to see, by the definition of the penalty

function, that Ph(r, reh, Pcap) is increasing in Pcap. Therefore, if r1 > r2 ≥ reh and P 1
cap >P

2
cap:

R(P 1
cap, rh0, r1, r

e
h)−R(P 1

cap, rh0, r2, r
e
h)> 0

=>R(P 2
cap, rh0, r1, r

e
h)−R(P 2

cap, rh0, r2, r
e
h)> 0

(31)

In other words, R(Pcap, rh0, r, r
e
h) is super-modular in (Pcap, r).

Denote the set of SNPE hospitals under Pmax
cap as SNPEmax. Suppose that there exists a Sub-game Perfect

Nash Equilibrium (SGPNE) π in the game (with the readmission vector, in the last period, given by rh,π)

such that a hospital h satisfies that h∈ SNPEmax and rh,π < rh0. Since h is an SNPEmax hospital, it holds,

in particular, that

R(Pmax
cap , rh0, rh0, gi(rh,π, r

e
h0))>R(Pmax

cap , rh0, r, gi(rh,π, r
e
h0)) ∀r < rh0 (32)

which implies that for all Pcap <P
max
cap ,

R(Pcap, rh0, rh0, gi(rh,π, r
e
h0))>R(Pcap, rh0, r, gi(rh,π, r

e
h0)) ∀r < rh0 (33)

Moreover, it is clear to see that R(P 1
cap, rh0, r1, r

e
h)−R(P 1

cap, x, r1, r
e
h) > 0 if x < rh0 since the action set

under x ([0, x]) is a subset of the action set under rh0 ([0, rh0]).

Therefore, letting ~rπ
t be the readmission vector at the end of stage t. The total operating margin the

hospital h collects in this SGPNE is less than the total operating margin collected under the strategy of

doing nothing:

N∑
t=1

R(P t
cap, r

t−1
h,π , r

t
π, gi(r

t
π, r

e
h0))<

N∑
t=1

R(P t
cap, rh0, r

t
π, gi(r

t
π, r

e
h0))

<

N∑
t=1

R(P t
cap, rh0, rh,0, gi(r

t
π, r

e
h0))

(34)

Note that the first inequality follows the restriction of the action to reduction in readmissions (rtπ ≤ rh0 ∀t).

This shows that the hospital h’s no-action strategy is optimal, and in turn the SGPNE is not a valid

equilibrium.

We next prove that the set SPE hospitals under the maximum penalty cap is also a valid upper bound on

the number of hospitals that reduce readmissions relative to rh0 in any equilibrium. Following our strategy

in the proof of Proposition 4, we must prove that for any SGPNE π, and at any period t, ~rπ
t ≥ ~rT as

generated by the algorithm with Pcap = Pmax
cap . Since rtπ is monotone decreasing in t, it suffices to show that

rπ = rNπ ≥ ~rT . We can restrict attention to non-SNPE hospitals since we have shown above that the SNPE

hospitals do not reduce readmission in any equilibrium π.
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Suppose that there exists an equilibrium π such that ~rNπ < ~rT , then ∃h such that rh,T > ~rh,π,N and, in

particular, rh0 > gi( ~rT , r
e
h0). Proposition 4 was concerned with a single stage. Here, this single stage will

be the last stage of the game. The initial condition of stage N is rN−1h,π . If we can now show that rN−1h,π 6∈
[ ~rT , f(rh0, gi( ~rT , r

e
h0))] (which is the analogue of Equation 27) then we can follow the proof in Proposition 4

to reach a contradiction.

To prove rN−1h,π 6∈ [gi( ~rT , r
e
h0), f(rh0, gi( ~rT , r

e
h0))] we use induction. For n = 1, this relation holds trivially

since (recall) R(Pcap, rh0, r, r
e
h) is super-modular in (Pcap, r). Now, let us assume this relation holds for all

k≤ n− 1 and show it prove that rnh,π 6∈ [gi( ~rT , r
e
h0), f(rh0, gi( ~rT , r

e
h0))].

Suppose not, then:

rnh,π = gi( ~rπ
n, reh0)< f(rh0, gi( ~rT , r

e
h0)) (35)

Since rn−1h,π 6∈ [gi( ~rT , r
e
h0), f(rh0, gi( ~rT , r

e
h0))], there exist a set of hospitals, denoted as H, such that rn−1h,π >

f(rh0, gi( ~rT , r
e
h0)), and they reduce to gi( ~rπ

n, reh0). By definition, both g1(~r, reh0) and g2(~r, reh0) are contraction

mapping of ~r component-wise, in other words:

|gi(~r, reh0))− gi(~r′, reh0))|< |r− r′| (36)

we know that
∑

h∈H (rnh,π − rn−1h,π ) >
∑

h∈H [gi( ~rπ
n, reh0)− gi( ~rπn−1, reh0)]. However, based on the optimal-

ity condition of the game,
∑

h∈H r
n
h,π =

∑
h∈H gi( ~rπ

n, reh0). This is a contraction, and therefore rnh,π 6∈
[gi( ~rT , r

e
h0), f(rh0, gi( ~rT , r

e
h0))]. This concludes the proof.
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